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Abstract. The retina has many desirable characteristics as a basis for
authentication, including uniqueness, stability, and permanence. In this paper, we
propose a new approach for retinal images feature extraction and template coding.
The use of the logarithmic spiral in scanning and tracking the vascular network, and
the time series technologies such as SAX representation conform the key to make this
new approach simple, flexible and reliable. Experiments show that this approach can
achieve the reduction of data dimensionality and of the required time to obtain the
biometric code of the vascular network in a retinal image.

Keywords: Biometric code, logarithmic spiral scan and tracking, time series,
retinal images.

Introduction

It has been proposed a number of authentication methods based on the retina. These
methods have focused primarily on selecting the appropriate features to represent the
retina (bifurcations, ending points, etc.). But the final representation of the features
has never been studied carefully. Biometric representation (femplate) is a machine
readable and understandable form of a biometric trait. It influences the system’s
accuracy and the design of the rest of the system. The machine representation of a
biometric is critical to the success of the matching algorithm. In a practical
authentication system, the database can contain records of millions of people.
Choosing an appropriate representation of the features in order to make the database
smaller in size, having a rapid response search and while retaining high accuracy in
the verification, is a vital task.

From previous studies, the retina’s features used for authentication can be
classified into three main categories: structural, statistical and algebraic features.
Some typical structural features include main lines (centerlines), branching points,
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crossing points, termination points, positions, angles, diameters, etc. Some statistical
features are the texture moments and the random values. Likewise, the algebraic
features, such as band-tree based radial partition, the ring method, etc.

The main contribution of this paper will be the implementation of a new biometric
representation method based on coding blood vessel segments, through a new
scanning and tracking algorithm of a logarithmic spiral type, from which is obtained a
time series representation of the local features of the detected and analyzed segments.
The time series have been studied extensively in data mining, bioinformatics and
pattern recognition in biometrics [1].

Disadvantages of the actual sampling methods

There are several disadvantages that the actual sampling methods have when they are
applied to retinal images. [1]-[16]. These are:

e The retina has an average of 400 minutiae points, between bifurcation,
intersection and ending points, thus the point to point comparison for all the
retinal images contained in a database is impractical and computationally
expensive.

e To encode a minutiae, it is necessary to perform an image preprocessing
step, within which is included retinal network thinning, which presents a
problem because most existing thinning methods, if not all, create false
positives when converting an intersection in a double crossing point and
breaking segments; this problem generates a greater number of ending points
than those that actually exist in the original image [28-32].

e To make the method more robust, it is necessary to extract additional
information from the detected minutiae such as angles, distances between the
minutiae and the reference point (center of the optic disc), minutiae distance,
etc., that increases the required processing time [33].

e The minutiae-based encoding method does not use the retinal vascular
network structure properties that are essentially the most robust and stable of
all characteristics [34-35].

Logarithmic spiral

A spiral is a curve that winds itself around a certain point. While not being a circle,
the radius will vary along the angle [20], [21]. The logarithmic spiral is the spiral for
which the radius grows exponentially with the angle. The logarithmic relation
between radius and angle leads to the name of logarithmic spiral. In this curve the
distances where a radius from the origin meets the curve increases in geometric
progression.

The logarithmic spiral is a spiral whose polar equation is given by:

r= (Eq. 1)
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where 7 is the distance from the origin, €1is the angle from the x-axis, and a and b are
arbitrary constants. The constant a is the rate of increase of the spiral. The sign of a
determines the direction of rotation of the spiral. The logarithmic spiral is also known
as the growth spiral, equiangular spiral, and spiral mirabilis. The logarithmic spiral is
remarkable because of its unique self-similarity; it is invariant after a similarity
transform. After any scaling (uniformly increasing or decreasing the size), logarithmic
spirals can be rotated such that they match the original figure.

Fig. 1 Self-similarity of the logarithmic spiral

\

The spiral boundaries can have any rate of twist, or pitch. The pitch is defined as
the angle between a tangent to the curve and the tangent to the circle at that radius.
The pitch is the same everywhere on a logarithmic spiral. Any such linear iterated
function system (IFS) that includes scaling and rotation (an affine transformation) will
contain logarithmic spiral patterns. Naturally, occurring algorithms (e.g. the
expression of a genetic code, hurricane dynamics, and galaxy formation) commonly
result in this shape. The shape also seems to be appealing to the eye, perhaps because
our visual perception is tuned for interpreting similarity (scale and rotational
invariance) of known objects.

Advantages of the logarithmic spiral

As sampling pattern method of the retinal image, the logarithmic spiral offers the
following advantages:

1. The data dimensionality is reduced because the retinal vascular network is
represented by a real valued data sequence [35].

2. The discontinuities are eliminated in the data caused by sampling, which occurs
when concentric flatted circles or other sampling methods are used. The
connectivity is a concept geometrically intuitive: A set is connected if it is
composed of a single segment. Tuning the initial concept has come to define the
connectedness paths: A set C is connected by road from any point x if the same can
reach any point C and touring a "continuous path" that does not leave the set. We
must recall that a connected component is a set of pixels such that for any pair of
pixels on the whole, there is a digital path that connects them. Intuitively, a
connected set is that composed of a single "piece’, which cannot be 'split' into parts
[38].

3. Only the points of the vascular network detected by the spiral are encoded and not
the entire region which includes the background; the features are extracted only
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along the spiral path. For every point P in the spiral certain structural information
at P is used as the feature [37].

4. A single sample for each point and a single sequence for each kind of coded data
are provided [37].

5. Travel and distribute in the same way as the vascular network does: in geometric
progression. The most problematic area is located within the optical disc which we
had removed previously.

6. The most robust and stable structure of the image is coded, that is, the vessel
segments of the vascular network and not to the branches, crossings and ending
points. Bifurcations and crossings are eliminated in order to avoid coding errors
[28-32].

7. It is not necessary to specify whether a given vessel is a vein or an artery, because
the midpoint of every detected vessel segment is used as the feature descriptor.

8. The amount of coded information is increased because it is possible to extract
some other features from the detected vessels along the spiral path [37].

9. The required size of the spiral or the number of turns is determined by the number
of the necessary points that ensure the subject's individuality [36]. This provides
invariance to small changes in the scale.

DRIVE Database

In this paper we used the images included in the publicly available DRIVE database
[17], to implement the proposed method and to assess its performance. It consists of
40 color retinal images of size 565 x 584 pixels with 8 bits per color channel. The File
of View (FOV) is circular with approximately 535 pixels in diameter. For each image,
a mask image is provided that delineates the FOV. Hence, detection of the FOV
border is not needed in this case. Images have been divided into 2 sets: a training set
and a test set, each containing 20 images. The training set is useful to design
supervised segmentation methods. Those images of the test set were segmented twice,
resulting in a set A and a set B. In set A, 12.7% of pixels were marked as vessel,
against 12.3% for set B. Performance is evaluated on the test set using the
segmentations of set A as ground truth. All images were manually segmented.

The proposed method

As depicted in Fig. 2, the proposed methodology is composed of two main processing
stages. In the next section we discuss each stage in detail.
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Fig. 2 Block diagram of the proposed method

1. Preprocessing stage: This step permits us to obtain the blood vessel image
segmented from the original gray scale retinal image and thus, the minutiae feature
extraction task is simplified. The preprocessing step consists of the following 4
stages: a) green-color band selection, b) image enhancement for vessel network
detection, c) optic disk detection, and d) logarithmic spiral creation.

2. Main processing stage: This issue constitutes the essence of an automatic
biometric authentication system design and has far reaching implications on the
performance of the rest of the system. The main process consists of 7 stages: a) co-
occurrence matrix computation, b) vessel segmentation by the second entropy
thresholding technique, ¢) blood vessel masking in the vicinity of the optic disc, d)
morphological thinning of the network, e) landmarks detection for their elimination, f)
rectangular region transformation into sequential data, and g) time series creation that
represent the features.

95
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Preprocessing stage

Preprocessing of the retinal image is a requirement after image acquisition due to the
high variability of this process. The preprocessing stage is also required to obtain a
better and a more homogeneous representation of the retinal image in order to achieve
repeatability in the feature extraction stage [10]. Preprocessing of retinal image is
necessary to: [15]

Improve the contrast of blood vessel structures;

Maintain their integrity;

Avoid introduction of spurious structures or artifacts; and

Retain the connectivity of the blood vessels while maintaining separation between
them.

2.0.1 Green-color band selection

A gray-level image is obtained by extracting the green layer from the original RGB
image. The green component has the blood vessels on a highly contrasted background
(dark blood vessels on a relatively bright background). Hence, the green channel of
image is preferred for the retinal vasculature detection [2] [16].

2.0.2 Image enhancement

Image denoising and contrast enhancement are needed before applying the vessel
segmentation algorithm for landmark extraction. Uneven illumination (also called
shading) is present in retinal images and must be suppressed in order to achieve more
accurate segmentation of the blood vessels. In order to characterize the retinal features
of interest, we use a Gaussian matched filter (GMF) to detect piecewise linear
segments of blood vessels in retinal images [18].

2.0.3 Optic Disc Detection

The optic disk is the brightest area in images that have not large areas of exudates and
it is a slightly oval disk. It is the entrance region of vessels and its detection is very
important since it works as a landmark for the other features in the retinal image.
Hence, by targeting common structures such as the optic disc and the retinal vascular
branches, a consistent source of readily identifiable, yet contrasting structures are
available for digital imaging and processing. The entrance point of the optic nerve
itself is taken as a point of reference. The distances and directions of the vein forks
from this reference point provide coordinates which can be hooked together in a serial
number for classified filing and quick comparison.

In the preprocessing technique used to detect the optic disc, the blood vessels are
“erased” from the original retinal fundus image through the successive application of
two morphological operations with a disk-like structuring element with N pixels
radius. First, it is used a morphological opening operation. The circled structuring
element is applied on the green color band of the fundus image. Next, it is used a
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morphological closing operation employing the same circled structuring element,
which is applied to the resulting image obtained from the previous step operation.
Then, the resulting image becomes a binary mask by means of a thresholding scheme,
which uses the Matlab function “IM2BW” found in the library of the image
processing Toolbox. The threshold value % is computed by using the Matlab function
“GRAYTHRESH” included in the same Toolbox. After this, the obtained binary
image is labeled. The area of the labeled regions in the binary image is calculated and
the region with the greatest area is isolated, which corresponds to the optic disc.
Finally, we compute the coordinates of the centroid of this isolated region to be used
as the reference point [16].

The experiment results of the preprocessing step of our algorithm are illustrated in
Fig. 3. Fig. 3 a) shows the original image used to illustrate the accurate detection of
the optic disc location. Fig. 3 b) illustrates the origin of the detected location of the
optic disc indicated by a blue asterisk surrounded by a circle of the same color.

a)

Fig. 3 Experimental results of the optic disc detection step for a typical image. a) Original
image, b) optic disc detected

2.0.4 Logarithmic spiral creation

We create the logarithmic spiral (Fig. 4) starting from the center of the optic disc
(used as the origin of the logarithmic spiral path) by using the Eq. 1.

Fig. 4 Logarithmic spiral
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Main Processing stage

To characterize the searched retinal features, it is necessary a good image
preprocessing. Therefore, the propose method detect vessels using the knowledge of
their known gray level profile and the concept of the matched filter detection, which
is used to detect piecewise linear segments of blood vessels in retinal images.

2.1.1 Gaussian matched filter

A matched filter is constructed for the detection of the vessel edge segments searching
in all possible directions [19]. A Bell-Shaped Gaussian matched filter (BSGMF) was

developed to cover all 12 orientations where designed kernel is given by Eq. 2.
K x,y =% I/ I | (Eq.2)
\ )
The application of this method enhances individual vessels segments in the image. A
proper thresholding scheme must be used to distinguish between the enhanced vessel
segments and the background.

2.1.2 Second-entropy thresholding segmentation method

The proposed segmentation thresholding method exploits the entropy of the
distribution of the gray levels in the image. The maximization of the entropy (Eq. 3)
of the thresholded image is interpreted as indicative of maximum information transfer
[22], [23], [24]. In Figure 5 some examples of the segmented blood vessels, using the
2"1ocal entropy thresholding method are presented.

— nax J...(¢) (Eq. 3)

te =
2.1.3 Blood vessel masking

Eventually, the edge of the optic disc could be misinterpreted by the segmentation
method as a blood vessel, therefore, it is necessary to delete or hide this area to reduce
the errors that its structure may cause.

In order to remove the blood vessels within the region of the optic disc, we
superimposed a disc-shaped binary mask with a radius r; 10% greater than the radius
of the optic disc centered at optic disc location. It is possible to do so when we can
assure that all images are of the same size. Two examples of the blood vessel erased
images are shown in Fig 5.
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Fig. 5 Results of the erasing blood vessels in the vicinity of the optic disc

2.1.4 Morphological thinning

Vessels in the vicinity of the optic disc have different diameter size. To overcome
this, retinal vessel thinning (through a skeletonizing method) is usually implemented
using a morphological operator that reduces the width of vessels to a single pixel
width line segments while preserving the extent and connectivity of the original
shape. The thinned representations is typically easier to process in later stages
producing savings in both time and storage complexity [25].

2.1.5 Minutiae extraction for their elimination

The bifurcation points in the thinned vessel tree are detected using the crossing
number method [26] and then erased, thus only the vascular structure of the vessel
segments is retained.

2.1.6 Rectangular region transformation

In order to represent the retinal vascular network using a time series, the rectangular
region with the skeletonized vascular network must be transformed into sequential
data. There are many possible ways of decomposing a 2D image into sequential data.
In this work, we adopted a logarithmic spiral as the track for the decomposition. Thus,
only this region is sampled with the logarithmic spiral, starting from the external edge
of the masked optic disc towards the periphery of the vascular network.

2.1.7 Feature extraction and representation

For each point on the spiral, the position and angle of the midpoint of the blood vessel
segments are encoded and a time series is created for each descriptor, one time series
for the position and one time series for the angle. Figure 6 show both time series of a
typical coded retinal image using a logarithmic spiral with a parameter a = 0.15942.
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Fig. 6 Time series with a = 0.15942

All the steps mentioned above are repeated using different parameter values of the
logarithmic spiral equation (a and b) in order to analyze the behavior of the generated
biometric code.

2.1.7.1  SAX Representation

Dimensionality reduction is achieved by converting time series into its SAX
representation Qsax [27]. We first transform the time series into the Piecewise
Aggregate Approximation (PAA) representation and then symbolize it as a discrete
string. The PAA representation is merely an intermediate step required to obtain the
symbolic representation, to be transformed later in the SAX discrete sequence, Qsax.
The number of segments and levels of the Qsax can be used to control the degree of

the dimensionality reduction (See figure 7).
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Fig. 7 shows some examples of the extracted data sequence and the corresponding
SAX representations with different lengths and levels illustrated in a typical retinal
image. The SAX representation Qsax is used as the template of the retinal vascular
network.

Experimental results

In this section we present our experimental results on the performance of the proposed
blood vessel segmentation method and of the feature extraction scheme. The blood
vessel segmentation and feature extraction approach introduced in the last stages of
the system will be evaluated to verify the suitability of such proposal.

The first stage of the evaluation is the blood vessel segmentation method. The second
part of the experiment will be focused on testing the feature points extraction step.

Blood vessel segmentation performance

The proposed segmentation method was applied to all 20 images of the training set of
the DRIVE database, and TPR (true positive rate) and FPR (false positive rate)
metrics were computed using the mask images provided by the database. A pixel-by-
pixel comparison between the outcome images and the ground truth was made. The
algorithm in the presented form yielded a TPR for these 20 images of 0.95356726
with a FPR of 0.00352145. The experimental results show that the proposed method
performs well in extracting vessels. There are several parameters of the algorithm that
have effects in the performance of the vessel segmentation method. The most
significant parameter is the thresholding value. Since the proposed segmentation
method obtains automatically this value for each image, it is not necessary to establish
a range of thresholding values, and also, the interaction of the user to adjust this value
depending on the image case is not necessary.

Feature extraction performance

To adjust the parameters and evaluate the methodology of using encryption as a
logarithmic spiral sampling pattern, we implemented the sequence of steps presented
above and analyzed the results obtained for each image and for each value used in the
implementation parameters. Table 1 shows the minimum, maximum and average
number of detected points and the required computational time depending on the
rotation value of the logarithmic spiral in all analyzed database.

From the results it is possible to observe the inverse relationship between the
logarithmic spiral turn and the amount of encoded points, i.e., when this value is
small, the resulting spiral travels very gently, so that the number of turns is greater
and therefore, the number of points that can be detected increases, but also greatly
increases the required time to generate the time series.

The obtained results using the complete database allow us to establish a more realistic
picture about the average number of detected points for a given rotation value of the
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spiral. In this way we could estimate the better rotation value to ensure that the
number of detected spots for all images is considered adequate to establish the
individuality of the person. As a result, the subject could be positively identified using
this biometric template without sacrificing the efficiency of the system and without
increasing significantly the processing time.

For example, if we choose a rotation value of 0.05 for the logarithmic spiral, the
average number of coded points will be 125, and the time that the system need to
encode an image would be 2.22 s.

Table 1. Max, min and average number of detected points and the required
computational time according to the rotation value of the logarithmic spiral

vgzza(tj;) " Max Min Mean Time (s)
0.01 347 212 293 4.5
0.02 272 173 228 42
0.03 232 132 178 3.9
0.04 208 99 150 2.56
0.05 166 89 125 222
0.06 154 81 112 2.12
0.07 139 60 94 1.09
0.08 123 60 84 1.01
0.09 127 56 80 1.01
0.1 104 49 75 1.01
0.2 66 33 46 1.01
0.3 38 15 25 1
0.4 39 16 26 1
0.5 22 11 17 1

1 13 4 7 1
2 11 3 6 1

On the other hand, if we want to increase the number of coded points to 178, we must
select as the spin value to 0.03, for which the system will take 3.9 s. This allows us to
establish a range of allowed spin values, without increasing the processing times
while ensuring the efficiency of the system and the individuality of the biometric code
based on the logarithmic spiral.
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From this analysis, we decided to select as the spiral value twist of 0.04, which
guarantees to encode an average of 150 points in a time of 2.56 s.

Conclusions

We have proposed a novel approach for the retinal image coding using logarithmic
spiral and time series technologies. Using a logarithmic spiral as the rectangular
region decomposition method and the SAX tool for the template representation are
the keys of this new approach. They have the following advantages: first, logarithmic
spiral share the geometrical characteristics that retinal network has, it is simple to
implement and the overall computational complexity is very low compared to
previous works (for more details consult ref [37], Table 3); second, it is very flexible
as the spiral parameters, the coded local features and the SAX parameters can be
adjusted according to different system requirements; third, the SAX representation
(essentially symbol string) makes it very convenient for the implementation of multi-
biometrics using feature fusion; fourth, logarithmic spiral and SAX representation
reduce the data dimensionality of the original retinal image to a real sequential data;
fifth, reduce the computational time required for the template representation and the
matching step.
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